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Abstract. The purpose of the present paper is to introduce suitable differential subordination
preserving properties for certain subclasses of functions which are analytic and p -valent in
the open unit disc defined by generalized Mittag-Leffler function that is entire in the complex
z-plane, by making use of the subordination and the classical Hadamard product definitions.

Keywords: analytic, p - valent functions, Hadamard product, subordination and Mittag-
Leffler function.
AMS Subject Classification. 30C45.

1. Introduction.
f@)=2°+Ynom  Gnpz™P? (pbmeN={12,..};zeU={z€
Cand |z| < 1}). (1)

Denote by A,(m) the class of analytic p — valent functions of the form:
We note that : A, (1) = A4, .

For two functions f(z) and g(z) ,analyticin U, f(z) issubordinate to
9g(2)(f(2) < g(2)) in U, if there exists a function w(z) , analyticin U with
w(0)=0 and |w(2)| <1, f(2) =g(w(2)) (z€U) andif g(z) is
univalent in U , then (see for details [1], [5] and also [7] ):

f(2) < g(2) & f(0) = g(0) and £ (U) < g(U).

The Hadamard product of f(z) and g(z) givenby g(z)=1z"+ i b, z"",

n+p
is defined by

(f*9)(2) = 2P + X3-m an+pbn+pzn+p = (g * f)(2). (2)
The Mittag-Leffler function E,(z) (z € C) ([10] and [11]) is defined by

— 1 n C 0
Ea,(Z) = ; mZ ((Z € ,Re(a) > )
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For a,B,y € C, Re(a) > max {0,Re(k)—1}and Re(k) >0,
Srivastava and Tomovski [18] generalized Mittag-Leffler function by the function

v.k _ Vo nk n
Ea.ﬁ(z) — 4&n=0 F(na+ﬁ)n!z )
and proved that it is an entire function in the complex z — plane, where
Iy +6) 1, 6=0

e = r'(y) {y(y +1D...(y+0-1),0 0
Aouf and Seoudy [3], used the function EZZ (z) and defined the p — valent
function

ripriy+nk) ..
riy)rep+ an)n!z '

MR

(Rea = 0 when Rek =1 with 8 # 0),

4)
and for f(z) € A,(m), they defined the operator
K K
HY® f(2) = QV% () * f(2)
o r(B)r(y+nk)
=zP + Yh=m F(](/fl)"(ﬁ]-/l-arrll)n! p+an+n- )
From (5) it is easy to have
kz(HY o of (2)) = yHY o f(2) — (v = pk)HY s 5 f (2) (k > 0) ®)

and

'

az(HY% 0 f(2)) = B HI% f(2) = (B —pa) HYk o, f(2),a#0. (7)
We note that:

() Hyopf (2) = f(2);

(i) Hyopf (2) = (1 = p)f (2) + 2f (2);

(iii) B, f(2)=2f (2);

(V) Hyg (o) = zPe?;

(V) Hip, () = ze”.

Using the operator H;)"‘(’;'Bf(z) , we have the following definition.
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Definition 1. For fixed A and B(—1 < B < A < 1), we say that a function
f € A,(m) isin the class Sg',':l(a,ﬁ;A,B), if it satisfies:

(Hyap! @) _ 144z
pzP~1 1+Bz’
In view of the definition of differential subordination, (8) is equivalent to:
(i1 1)

pa,
p-1 P

vk '
B—<H”'Z“l’,€£(2)> —pA

We note that:
()

(8)

< 1. 9)

S¥1(0,1;4,B) = S,(4,B) (-1 <B <A< L;z€U)
f(z2) 1+Az
= €A, : <
{f P " pzp-1 " 14Bz/
the class S, (A, B) was introduced and studied by Chen [9].
(i)

2n
HYk '
= {f € A,(m) : Re {%ﬂ} > } (10)

2. Preliminary results.

The following lemmas will be required in our investigation.
Lemma 1[7,8] . Let h(z) be analytic and convex (univalent) function in U with
h(0) = 1. Also let

0(2) =1+dpz™+ dpp 2™+, (11)
be analyticin U. If
9(2) + 22 < h(z)(Re() 2 0;7 % 0;z € U), (12)
then
9@ <¥(@)=Zzm[] tn h(t)de < h(2), (13)

and ¥ isthe best dominant of (12).

Lemma 2 [20]. Let u be a positive measure on the unit interval [0,1]. Let
g(z,t) be acomplex valued function defined on U X [0,1] such that g(.,t) is
analyticin U foreach t € [0,1] andsuchthat g(z,.) is u integrable on

[0,1] forall z € U. In addition, suppose that Re{ g(z,t)} > 0, g(—r,t) is
real and
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1 1
1@b&iﬁzg6nongr<ntemﬂ)

If the function G is defined by
1
6@ = 90w,
0

then

1 1
R > <r<1).
e{G(z)} G(-r) (zl =<7 )
Each of the identities (asserted by Lemma 3) is fairly well known (cf., e.g., [19]).

Lemma 3 [19]. For real or complex numbers a, b and ¢ (¢ # 0,—1,-2,...)

1
f th=1(1 — )¢ P=1(1 — tz)~%dt

0
= {2 JFi(a, b; ¢ 2) (Re(c) < Re(b) > 0); (14)
2F(a,b;c;z) = (1 —2z)"%F; (a, c—b;c; ;—1) (z#1) (15)
and
2F(a,b;c;z) = ,F(b,a;c; 2). (16)

Lemma 4 [17]. Let @ be analyticin U with
1
®(0) =1and Re{P(2)} > >

Then, for any function F analyticin U, (@ = F)(U) is contained in the convex
hull of F(U).

Lemma 5 [14]Let ¢ be analyticin U with ¢(0) =1 and ¢(z) # 0 for 0 <
|z| <1, andlet A,B € C with A # B,|B| < 1.

(i) Let B #+ 0 and A € C\{0} satisfy either

AMA—-B AMA—-B
—( )—1 <1lor —( )+1 <1
B B
If ¢ satisfies
20 (z 1+ Az
1+ <p()< ,
Ap(z) 1+ Bz
then

W55

@(z) < (1+B2)"\U'B

and this is the best dominant.

(i) Let B =0 and A € C\{0} besuchthat |AA| < m. If ¢ satisfies
zp'(z) 1+ Az

10(z) 1+BZ

1+
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then

(,D(Z) < eAAZ
and this is the best dominant.
We used the technique used by ([2,4]and [12]).

3. Main Inclusion Relationships.

Unless otherwise mentioned, we assume throughout this paper that —1 <
B<A<1a/p,y€C, Re(a) > MaX {0,Re(k)—1%}and Re(k) >
0,6 >0,f(2) givenby (1.1)and z € U.

Theorem 1. Let y # 0 the function f(z) satisfy:

(u) f(z)) (B @)  14az

aﬁ p.a.B
( 5) pz Zb— 1 < 1+le (17)
then

(HY £@) 1

p.a,B +Az

IR (18)

where
A _4 -1 Y 49,52
win - 17 +(1-2) (1 +B2) 2F1 (1L + L), B#0 )
1+ +5k Az, B=0
is the best dominant of (19). Furthermore,
HY'S Sf(2)

Re{(pz# >p(0<p<1), (20)

where
4 _A1-p)1 Y 11. B
. (1-2)a-B) 2F1 (1L:=+1:=), B#0 on
1-— A, B =0.
y+5km

The result is the best possible.

Proof Let

(HY r @)
@B
¢(2) =— (22)

where ¢ is given by (11) Differentiating (22) and using (6), we get

G f(Z)) (H”“‘f(z)) sk
ap p.a.B _ zp'(z) 1+ Az
T T s et — = <

(1-9)

Now, by using Lemma 1 for T = ;—k, we get
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'

HYY f(2) vy (2 v 1+At
UBaal D) o ¥ it [ et (22
0

pzp~1 okm 1+ Bt
A+(1 A)(1+B ) LF (11- Y1 Bz ) B=+0
_)B B 22\ skm T 1+ B2)”
- |4
1+——A B =0.
+ y + 8km “ 0
This proves (18) of Theorem 1. In order to prove (19), we need to show that
|z|<1
inf {Re(¥(2))} = ¥(=1). (23)
We have
{1+Az}>1—Ar Uzl <7 <1)
‘U+Bd~1-Br V=75
Putting
G(z,0) 1+ 4¢z dd Y csem 4 0<7<1)
= = — m

which is a positive measure on [0,1], we obtain
1

W(2) = j 6(2,0)dv(0).
0
Then

1 1-4
Re(¥(2)) = j; 1= BZ

Assuming r — 17 in the above inequality, we obtain (23). The result in (20) is
the best possible and ¥ is the best dominant of (18). This completes the proof of
Theorem 1.

Taking § = 1 in Theorem 1, we obtain

Corollaryl. The following inclusion relation holds:

dv(() =¥(-r) (Jz]| £r < 1).

2
S;/;ILk(a,ﬁ;A,B) (- S;,’l’,lfi (a,ﬁ; 1-— ?77' —1)
c SIk(a,B;4,B)(0 <1 < p),
where
A+(1 A>(1 B)‘lF(ll Y 11 B) B#0
n=1{B B 21\ kem T B-1)"
-t 4 B=0.

y + km
The result is the best possible.

Taking 6 =1,A=1- 2?"(0 <71 <p) and B = —1 in Theorem 1, we obtain
Corollary2. The following inclusion relation holds:
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Sy, Bim) € Sy (e, B; C(m, v, k,m)) © S (at, B3 ),
where
4 1
The result is the best possible.
Theorem 2. Let f(z) €S V’,’fl(a B,n)(0 <n < p), then

af HY U

Re{(l )(” B())+5(szf;f)) >n (lz| <R), (24)

where
1

o {m_kam}ﬁ_ (25)
The result is the best possible
Proof Since f(z) € SY(a, B,1), let

K (@
(p# =1+ (1 = mu(2), (26)

where u(z) isgiven by (11) and Re{u(z)} > 0. Differentiating (26) and using
(6), we get

HYk YLK
" f( ) ap Sz )
Applylng the foIIowmg estimate [6]:
|zu'(2)| 2mr™
Re{u(z)} ~ 1 m (2l =7 <),

in (27), we get

| (B f@) (M @)
—Re|(1-0) ppzp_l +6 ppzp — =1
2kémr™

It is easily seen that the right-hand side of (28) is positive, if r < R, where R is
given by (25).

In order to show that the bound R is the best possible, we consider the function
f € Ap(m) defined by

(st @) el

pzP~t
Noting that
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’

1| e @) | (e f@)
1-7 pzP~t pzP~t 7
vy =2z"™) + 2kémz™ 0
- y(1 —zm)? -
for
_ R {in}
z=R exp|_.

This completes the proof of Theorem 2.
Putting 6 = 1 in Theorem 2, we obtain the following result.
Corollary 3. If f(z) € Sg,/,','ﬁl(a, B,m(0 <n <p), then f(z) €

5;,;11"((“' B,n) for |z| < R*, where
1

i {kzm2+y2—km}m
R* = .

14
The result is the best possible.
For ¢ > —p and f(z) € A,(m), the integral operator J.,f (z): Ap,(m) —
Ap,(m) is defined by

Jeof @) = [ et

= P4 E -_ Ptk
<Z e~ c+p+kZ >*f(z)'

=z0F(Lc+pc+p+1;2) * f(2). (29)
The operator J,f(z) was introduced by Saitoh [15] and Saitoh et al. [16].
From (29), we get

c+p
C

'

k : k
z(HY% glepf @) = (c + PIHLS 5f (2) = CHY ] (2). (30)
Theorem 3. Let f(2) € S;,’,’,'fl(a,ﬁ;A,B) and /., defined by (29). Then
(HY sJepf@) 1
pa,plop +Az
pzP~1 <0(2) < 1+BzZ’ (31
where
A A -1 eHp 4. B2
(-2 a+ B R (L2 1), B0
0(z) = c+p (32)
1+ Az, B=0
c+p+m

is the best dominant of (32). Furthermore,
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YK Jenl ()
Re {%Tpf(z))} >0(0<0<1), (33)
where
A (1= (1 - )t o g B
o B+(1 B) (1-B)"LF, (1,1, - +1,B_1), B#0 o
1- cf;fm 4, B=0
The result is the best possible.
Proof Let
HY Jenf @)
0(z) = (hplent @) i ), (35)
where @ is given by (11). Differentiating (35) and using (30), we get
k
(HY% glenf ) s P g LAz
pzP~1 =6 (c+p) 2) 1+ Bz

Now the remaining part of Theorem 3 follows by using the technique used in
proving Theorem 1.
Theorem 4. Let f(z) be inthe class A,(m). Also let g(z) € A,(m)

satisfying:
HYY 29(2)
Re {M > 0.
A4

If

HY of (2)

p.a,B

— % 1| < 1,
h Hp’a’ﬁg(z)
then

Z(Hy'k f(z))’
Re{=228 "L~ 0 (|z| <Ry, 36
{ > 0 Uzl <R (36)
where
__ J9Im2+4p(p+m)—3m
Ry = Y . (37)
Proof Let
HYK f@)
p(z) = I;jﬁ'—[’ig(z) —1=¢enpzm+enq 2™+, (38)
p.ap

we note that ¢ is analyticin U, with ¢(0) = 0 and |@(z)| < |z|™. Then, by
applying the familiar Schwarz Lemma [13], we have ¢@(z) = z™¥(z) is analytic
in U and |¥(2)| <1 (z € U). Therefore, (38) leads to
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HY% of (2) = HY' 1g(2) (™9 (2) + 1). (39)
Differentiating (39) Iogarithmically with respect to z , we obtain

(Hykgf(z)) _ (Hykﬁg(z)) n z™[m¥ (2)+2¥'(2)] (40)
HY'E oF(2) 592 (O

HV" 9(2)
Letting y(z) = %pz

analyticin U, Re y (z) > 0 and

v.k ' ,
2(Hap9@) _2x'@) |
k -
Hy' 59(2) x(2)
so, we find from (38) that

gk '
o))
Hy o pf (@)
Using the following known estimates [6] (see also [13]):
¥ @| 2mrm? my¥(z) + z¥'(2)

x| 1—-r2m 1+ zm¥(z)
in (41), we have

, We see that the function y is of the form (11), is

zM[m¥ (2)+z¥'(2)]
1+zMy(z)

@]
x(2)

(41)

m
=71_

_(lz] =7 < 1),

K '
z (Hya 3f(Z)) _P- 3mr™ — (p + m)r?™

which is certainly positive, prowded that » < Ry, R, given by (37).
Theorem 5. Let the function f(z) € Sz’,'"rlfl(a,ﬁ; A,B) and g(z) € A,(m)
satisfying:
9(2)
> —.
zP 2

Re

Then
(f * 9) € Sy (a, B; A, B).

Proof We have

(17 e @) (7,1 @)
pzP~1 B pzP~!
6@

Re > 1
zP 2

* zP g(2).
Since
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. Az . . . .
and the function 1::_3; is convex (univalent) in U, it follows from (8) and Lemma

4that (f*g) € Syk (a, B; A, B), which completes the proof of Theorem 5.
Theorem 6. Let & > 0 and the function f(z) € A,(m) satisfying:

f@ HIEFZ) 144
_ paﬁ p.aB Z
h (1-196) + 6= 5, (42)
then
HY'S Sf(2) i L
Re ”’T > g4 (q € N), (43)
where € inthe form (21). The result is the best possible.
Proof Let
1-1"" f
(2) = —B (Z), (44)

where ¢ is glven by (11) Differentiating (44) and using (16) and (42), we have
Hy+1 k 7 ,
Zp zP y 1+ Bz
Now the remaining part of Theorem 6 follows by using the technique used in proving
Theorem 1. This completes the proof of Theorem 6.
Proceeding on the same lines as in Theorem 6, we can prove the following theorem.
Theorem 7. Let § > 0 and the function f(z) € A,(m) satisfying:

pa,;ﬂf( z) 6Hykﬁf(2) 1+ A4z

— <
1-6) zP 1+ B7
then
X 1
HY f(2)\° 1
p,a,f+1 pr
<—ZP > x5 (0 EN),
where
A+(1 A)(1 B)‘IF(ll p +1 5 ) B#0
B B 21\ sam 'B-1)’
Xo = B
1——A4, B =0.
B+ dam

The result is the best possible.

Theorem 8. Let y,v € C\{0} and 4,B € C with A# B and |B| < 1.

Suppose that

vy(A —B)
kB

vy(A — B)
kB

—1‘S10r

+1‘S1,ifB¢0,
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km
lv| < —,if B = 0.
14

If f € Ap(m) with HY'z f (z) # 0 forall z € U* = U\{0}, then
k
Hyap f(@) 1+ 4z
k )
p,a,ﬁf(z) 1+ Bz

HYw of (2)
( b Z) < q1(2),

1+ BT F), B %0
q:1(z) = )

implies

where

vyAz
ek B=0
is the best dominant (all the powers are the prmcipal ones).
Proof Let us put

IO

— pa,

(p(z) - < ZP ) ) (45)
where the power is the principal one. Then ¢ is analyticin U, (0) =1 and

@ (z) # 0 forall z € U . Taking the logarithmic derivatives on both sides of (45)

and using the identity (6), we have
kzo'(2) Hya[;’ f(2) - 1+ Az
vy (2) H,Z,f.ﬁ,gf(z) 1+ Bz
Now the assertions of Theorem 6 follow by using Lemma 5 with A = % This

completes the proof of Theorem 8.

Putting B=—1 and A =1—2p,0 < p < 1, in Theorem 8, we obtain the

following result.

Corollary 4. Assume that y,v € C\{0} satisfies either

2vy(1—p) 2vy(1—p) N
k k

If f€ A,(m) with H aﬁf(z) # 0 forall z € U*, then

HY" W f(2)
Re (%) ’,
HY o (2)

-1l <1lor 1| < 1.

implies
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vk v
) S

VAY

and q, is the best dominant (the power is the principal one).
4. Remark.

For different value of y, k,a, B and p in the above results, we obtain

results corresponding to the functions given in the introduction.
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